$\mu = 0.10 \text{ mm}^{-1}$ T = 298 (2) K

 $R_{\rm int} = 0.058$

 $0.36 \times 0.33 \times 0.19 \text{ mm}$

7885 measured reflections

2678 independent reflections

1368 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

5-(4-Fluorophenyl)-2,6-dioxo-2,3,6,7,-8,9-hexahydro-1H,5H-imidazo[1,2-a]quinoline-4-carbonitrile

Qiva Zhuang,* Chunmei Li, Qingging Shao and Bo Jiang

School of Chemistry and Chemical Engineering, Xuzhou Normal University, Xuzhou 221116 People's Republic of China Correspondence e-mail: laotu2001@263.net

Received 27 August 2007; accepted 28 August 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.005 Å; R factor = 0.047; wR factor = 0.112; data-to-parameter ratio = 12.3.

In the molecule of the title compound, $C_{18}H_{14}FN_3O_2$, the imidazole and dihydropyridine rings are nearly coplanar with a dihedral angle of 2.46 $(3)^{\circ}$, while the cyclohexene ring has an envelope conformation. The benzene ring is oriented with respect to the coplanar ring system at a dihedral angle of 81.45 (2)°. In the crystal structure, intermolecular N-H···N hydrogen bonds link the molecules into dimers.

Related literature

For related literature, see: Stout & Meyers (1982); Gueiffier et al. (1996); Elhakmaoui et al. (1994). For general background, see: Cremer & Pople (1975). For bond-length data, see: Allen et al. (1987).

Experimental

Crystal data $C_{18}H_{14}FN_3O_2$ $M_r = 323.32$ Monoclinic, $P2_1/c$

<i>a</i> =	10.781	l (3)	Å
b =	14.932	7 (4)	Å
<i>c</i> =	9.839	(3)	Å

$\beta = 106.270 \ (5)^{\circ}$
V = 1521.0 (7) Å ³
Z = 4
Mo $K\alpha$ radiation

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.964, \ T_{\max} = 0.981$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.047$ 217 parameters $wR(F^2) = 0.112$ H-atom parameters constrained S = 1.00 $\Delta \rho_{\rm max} = 0.17 \text{ e } \text{\AA}^ \Delta \rho_{\rm min} = -0.17 \text{ e} \text{ Å}^{-3}$ 2678 reflections

Table 1	
Hydrogen-bond geometry (Å, °).	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N2 - H2 \cdot \cdot \cdot N3^i$	0.86	2.15	3.006 (4)	173
	_			

Symmetry code: (i) -x + 2, -y, -z.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL.

We are grateful to the National Science Foundation of China (grant No. 20672090), the Natural Science Foundation of Jiangsu Province (grant No. BK 2006033) and the Six Kinds of Professional Elite Foundation of Jiangsu Province (grant No. 06-A-039) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2320).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, S1-19.
- Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (1999). SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Elhakmaoui, A., Gueiffier, A., Milhavet, J.-C., Blache, Y., Chavignon, O., Teulade, J.-C., Snoeck, R., Andrei, G. & De Clercq, E. (1994). Bioorg. Med. Chem. Lett. 4, 1937-1940.
- Gueiffier, A., Lhassani, M., Elhakmaoui, A., Snoeck, R., Andrei, G., Chavignon, O., Teulade, J.-C., Kerbal, A., Essassi, E. M., Debouzy, J.-C., Witvrouw, M., Blache, Y., Balzarini, J., De Clercq, E. & Chapat, J.-P. (1996). J. Med. Chem. 39, 2856-2859.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany,
- Stout, D. M. & Meyers, A. I. (1982). Chem. Rev. 82, 223-243.

supplementary materials

Acta Cryst. (2007). E63, o3935 [doi:10.1107/S1600536807042110]

5-(4-Fluorophenyl)-2,6-dioxo-2,3,6,7,8,9-hexahydro-1H,5H-imidazo[1,2-a]quinoline-4-carbonitrile

Q. Zhuang, C. Li, Q. Shao and B. Jiang

Comment

1,4-Dihydropyridines (1,4-DHPs) are well known compounds because of their pharmacological profiles as calcium channel modulators (Stout & Meyers, 1982). With a 1,4-DHPs parent nucleus, imidazo[1,2-*a*]quinoline belongs to a class of compounds which are special not only because of their interesting chemical and physical properties, but also due to their immense utility in the pharmaceutical industries. The discovery of imidazo[1,2-*a*]quinoline including imidazo[1,2-*a*]- pyridine moiety, as new potential pharmacological molecules, may be of great significance. It is well established that the chemical modifications on the imidazo[1,2-*a*]pyridine skeletons may bring remarkable changes of biological activity (Gueiffier *et al.*, 1996; Elhakmaoui *et al.*, 1994). We report herein the crystal structure of the title compound, (I).

In the molecule of the title compound, (I), (Fig. 1) the bond lengths and angles are generally within normal ranges (Allen *et al.*, 1987).

Ring A (C1—C6) is not planar, having total puckering amplitude, Q_T , of 0.488 (3) Å, [$\varphi = -64.74$ (3)°, $\theta = 117.65$ (3)°] (Cremer & Pople, 1975), and adopts an envelope conformation with atom C3 displaced by -0.663 (3) Å from the plane of the other ring atoms. Rings B (N1/C1/C6—C9), C (N1/N2/C9—C11) and D (C13—C18) are, of course, planar and rings B and D are also nearly coplanar with a dihedral angle of 2.46 (3)°. Ring D is oriented with respect to the coplanar ring system at a dihedral angle of 81.45 (2)°.

In the crystal structure, the intermolecular N—H···N hydrogen bonds (Table 1) link the molecules into dimers (Fig. 2), in which they seem to be effective in the stabilization of the structure.

Experimental

The title compound, (I), was prepared by the reaction of 4-fluorobenzaldehyde (124 mg, 1 mmol), 2-(3-oxocyclohex-1enylamino)acetic acid (169 mg, 1 mmol) with malononitrile (66 mg, 1 mmol) in solvent of ethylene glycol (2.0 ml) at 393 K under microwave irradiation (maximum power 200 W, initial power 100 W) for 5 min. Single crystals suitable for X-ray analysis were obtained from an ethanol solution (95%) by slow evaporation (yield; 284 mg, 88%, m.p. 559–560 K).

Refinement

H atoms were positioned geometrically with N—H = 0.86 Å (for NH) and C—H = 0.93, 0.98 and 0.97 Å for aromatic, methine and methylene H atoms, respectively, and constrained to ride on their parent atoms, with $U_{iso}(H) = 1.2U_{eq}(C,N)$.

Figures

Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2. A packing diagram for (I). Hydrogen bonds are shown as dashed lines.

5-(4-Fluorophenyl)-2,6-dioxo-2,3,6,7,8,9-hexahydro-1H,5H- imidazo[1,2-a]quinoline-4-carbonitrile

Crystal data	
$C_{18}H_{14}FN_3O_2$	$F_{000} = 672$
$M_r = 323.32$	$D_{\rm x} = 1.412 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Melting point: 559-560 K
Hall symbol: -P 2ybc	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 10.781 (3) Å	Cell parameters from 1113 reflections
b = 14.937 (4) Å	$\theta = 2.4 - 21.3^{\circ}$
c = 9.839 (3) Å	$\mu = 0.10 \text{ mm}^{-1}$
$\beta = 106.270 \ (5)^{\circ}$	T = 298 (2) K
V = 1521.0 (7) Å ³	Block, colourless
Z = 4	$0.36 \times 0.33 \times 0.19 \text{ mm}$

Data collection

Bruker CCD area-detector diffractometer	2678 independent reflections
Radiation source: fine-focus sealed tube	1368 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.058$
T = 298(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.0^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -12 \rightarrow 12$
$T_{\min} = 0.964, \ T_{\max} = 0.981$	$k = -17 \rightarrow 17$
7885 measured reflections	$l = -11 \rightarrow 11$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.047$	H-atom parameters constrained
$wR(F^2) = 0.112$	$w = 1/[\sigma^2(F_o^2) + (0.0328P)^2 + 0.3811P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.01	$(\Delta/\sigma)_{\rm max} < 0.001$
2678 reflections	$\Delta \rho_{max} = 0.17 \text{ e } \text{\AA}^{-3}$
217 parameters	$\Delta \rho_{min} = -0.17 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

Special details

methods

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
F1	0.9987 (2)	-0.14960 (16)	0.7379 (2)	0.1056 (8)
N1	0.6362 (2)	0.12725 (14)	0.1016 (2)	0.0360 (6)
N2	0.7956 (2)	0.13795 (15)	0.0009 (2)	0.0395 (6)
H2	0.8621	0.1239	-0.0266	0.047*
N3	0.9607 (3)	-0.08486 (18)	0.0697 (3)	0.0617 (8)
01	0.48004 (19)	-0.12894 (13)	0.2715 (2)	0.0531 (6)
O2	0.7643 (2)	0.28153 (14)	-0.0880 (2)	0.0619 (6)
C1	0.5553 (2)	0.08620 (19)	0.1683 (3)	0.0339 (7)
C2	0.4489 (3)	0.14201 (18)	0.1931 (3)	0.0414 (8)
H2A	0.3764	0.1426	0.1084	0.050*
H2B	0.4787	0.2031	0.2137	0.050*
C3	0.4061 (3)	0.10459 (19)	0.3161 (3)	0.0489 (8)
H3A	0.4749	0.1121	0.4033	0.059*
H3B	0.3312	0.1374	0.3251	0.059*
C4	0.3728 (3)	0.00648 (19)	0.2935 (3)	0.0464 (8)
H4A	0.3567	-0.0176	0.3785	0.056*
H4B	0.2940	0.0004	0.2169	0.056*
C5	0.4778 (3)	-0.0473 (2)	0.2589 (3)	0.0385 (7)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

C6	0.5737 (3)	-0.00083 (18)	0.2071 (3)	0.0328 (7)
C7	0.6892 (3)	-0.05532 (17)	0.1965 (3)	0.0334 (7)
H7	0.6569	-0.1104	0.1445	0.040*
C8	0.7650 (3)	-0.00414 (18)	0.1131 (3)	0.0346 (7)
C9	0.7373 (3)	0.08079 (18)	0.0738 (3)	0.0341 (7)
C10	0.7359 (3)	0.2201 (2)	-0.0233 (3)	0.0419 (8)
C11	0.6280 (3)	0.21783 (17)	0.0460 (3)	0.0425 (8)
H11A	0.6414	0.2618	0.1213	0.051*
H11B	0.5450	0.2286	-0.0223	0.051*
C12	0.8730 (3)	-0.04756 (19)	0.0866 (3)	0.0418 (8)
C13	0.7743 (3)	-0.08156 (19)	0.3424 (3)	0.0355 (7)
C14	0.8134 (3)	-0.0171 (2)	0.4468 (3)	0.0450 (8)
H14	0.7881	0.0421	0.4268	0.054*
C15	0.8894 (3)	-0.0398 (3)	0.5800 (3)	0.0555 (9)
H15	0.9154	0.0035	0.6503	0.067*
C16	0.9252 (3)	-0.1262 (3)	0.6059 (4)	0.0638 (10)
C17	0.8917 (3)	-0.1908 (3)	0.5061 (4)	0.0716 (11)
H17	0.9197	-0.2494	0.5265	0.086*
C18	0.8151 (3)	-0.1678 (2)	0.3734 (4)	0.0554 (9)
H18	0.7907	-0.2117	0.3039	0.066*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
F1	0.0817 (15)	0.149 (2)	0.0675 (14)	0.0011 (15)	-0.0098 (12)	0.0457 (15)
N1	0.0427 (15)	0.0250 (13)	0.0445 (14)	0.0032 (12)	0.0189 (12)	0.0039 (11)
N2	0.0443 (15)	0.0360 (15)	0.0431 (15)	0.0017 (12)	0.0200 (12)	0.0053 (12)
N3	0.066 (2)	0.0445 (17)	0.089 (2)	0.0114 (15)	0.0466 (17)	0.0115 (16)
01	0.0565 (14)	0.0360 (13)	0.0746 (16)	-0.0037 (11)	0.0311 (12)	0.0067 (12)
O2	0.0741 (16)	0.0412 (14)	0.0792 (16)	-0.0040 (12)	0.0361 (13)	0.0171 (12)
C1	0.0312 (16)	0.0373 (19)	0.0341 (17)	-0.0034 (14)	0.0104 (14)	-0.0040 (14)
C2	0.0454 (19)	0.0345 (18)	0.0479 (18)	0.0059 (15)	0.0191 (15)	0.0012 (15)
C3	0.056 (2)	0.045 (2)	0.055 (2)	0.0035 (16)	0.0294 (17)	-0.0027 (16)
C4	0.0434 (19)	0.048 (2)	0.053 (2)	0.0015 (16)	0.0234 (16)	0.0006 (16)
C5	0.0411 (19)	0.0371 (19)	0.0381 (17)	-0.0010 (16)	0.0126 (14)	0.0020 (15)
C6	0.0383 (17)	0.0283 (17)	0.0341 (16)	-0.0029 (14)	0.0143 (13)	-0.0023 (14)
C7	0.0407 (17)	0.0215 (15)	0.0401 (17)	-0.0001 (13)	0.0148 (14)	0.0011 (13)
C8	0.0379 (17)	0.0302 (18)	0.0401 (17)	0.0022 (14)	0.0181 (14)	0.0029 (14)
С9	0.0386 (17)	0.0331 (18)	0.0338 (16)	-0.0011 (14)	0.0153 (14)	0.0002 (14)
C10	0.049 (2)	0.0305 (18)	0.0471 (19)	-0.0030 (16)	0.0150 (16)	0.0051 (15)
C11	0.056 (2)	0.0264 (17)	0.0498 (18)	0.0045 (15)	0.0221 (16)	0.0050 (14)
C12	0.051 (2)	0.0280 (17)	0.0518 (19)	-0.0019 (16)	0.0232 (16)	0.0047 (15)
C13	0.0349 (17)	0.0298 (17)	0.0450 (18)	0.0016 (14)	0.0165 (14)	0.0066 (15)
C14	0.0413 (19)	0.046 (2)	0.047 (2)	0.0040 (15)	0.0130 (16)	0.0029 (16)
C15	0.045 (2)	0.077 (3)	0.046 (2)	-0.0005 (19)	0.0137 (17)	-0.0024 (19)
C16	0.045 (2)	0.089 (3)	0.052 (2)	-0.002 (2)	0.0055 (18)	0.024 (2)
C17	0.069 (3)	0.053 (3)	0.082 (3)	0.011 (2)	0.004 (2)	0.031 (2)
C18	0.060 (2)	0.034 (2)	0.067 (2)	0.0042 (17)	0.0087 (19)	0.0070 (17)

Geometric parameters (Å, °)

F1—C16	1.363 (4)	С5—С6	1.451 (4)
N1—C1	1.374 (3)	C6—C7	1.516 (3)
N1—C9	1.383 (3)	С7—С8	1.517 (3)
N1—C11	1.453 (3)	C7—C13	1.522 (4)
N2—C9	1.375 (3)	С7—Н7	0.9800
N2—C10	1.375 (3)	С8—С9	1.335 (3)
N2—H2	0.8600	C8—C12	1.420 (4)
N3—C12	1.149 (3)	C10—C11	1.504 (4)
01	1.225 (3)	C11—H11A	0.9700
O2—C10	1.204 (3)	С11—Н11В	0.9700
C1—C6	1.354 (4)	C13—C18	1.368 (4)
C1—C2	1.492 (3)	C13—C14	1.384 (4)
C2—C3	1.518 (4)	C14—C15	1.379 (4)
С2—Н2А	0 9700	C14—H14	0.9300
C2—H2B	0.9700	C15—C16	1.351 (5)
C3—C4	1.510 (4)	С15—Н15	0.9300
С3—НЗА	0.9700	C16—C17	1.352 (5)
С3—Н3В	0.9700	C17—C18	1.378 (4)
C4—C5	1.502 (4)	C17—H17	0.9300
C4—H4A	0.9700	C18—H18	0.9300
C4—H4B	0.9700		
C1—N1—C9	120.8 (2)	С8—С7—Н7	107.9
C1 - N1 - C11	128.0(2)	C13—C7—H7	107.9
C9—N1—C11	111.2 (2)	C9—C8—C12	120.6 (3)
C9—N2—C10	112.6 (2)	C9—C8—C7	121.7 (2)
C9—N2—H2	123.7	C12—C8—C7	117.6 (2)
C10—N2—H2	123.7	C8—C9—N2	130.1 (3)
C6—C1—N1	120.1 (2)	C8—C9—N1	122.9 (2)
C6—C1—C2	123.3 (2)	N2—C9—N1	107.0 (2)
N1—C1—C2	116.7 (2)	O2—C10—N2	126.5 (3)
C1—C2—C3	110.1 (2)	O2—C10—C11	126.9 (3)
C1—C2—H2A	109.6	N2—C10—C11	106.6 (2)
C3—C2—H2A	109.6	N1-C11-C10	102.6 (2)
C1—C2—H2B	109.6	N1—C11—H11A	111.2
C3—C2—H2B	109.6	C10-C11-H11A	111.2
H2A—C2—H2B	108.1	N1—C11—H11B	111.2
C4—C3—C2	110.6 (2)	C10-C11-H11B	111.2
С4—С3—Н3А	109.5	H11A—C11—H11B	109.2
С2—С3—Н3А	109.5	N3—C12—C8	177.3 (3)
С4—С3—Н3В	109.5	C18—C13—C14	118.5 (3)
С2—С3—Н3В	109.5	C18—C13—C7	121.6 (3)
НЗА—СЗ—НЗВ	108.1	C14—C13—C7	119.9 (2)
C5—C4—C3	112.9 (2)	C15—C14—C13	120.8 (3)
С5—С4—Н4А	109.0	C15—C14—H14	119.6
С3—С4—Н4А	109.0	C13—C14—H14	119.6
C5—C4—H4B	109.0	C16—C15—C14	118.4 (3)

supplementary materials

C3—C4—H4B	109.0		С16—С15—Н15		120.8
H4A—C4—H4B	107.8		С14—С15—Н15		120.8
O1—C5—C6	121.1 (3)		C15-C16-C17		122.7 (3)
O1—C5—C4	120.3 (3)		C15—C16—F1		119.0 (4)
C6—C5—C4	118.7 (3)		C17—C16—F1		118.3 (4)
C1—C6—C5	119.8 (3)		C16—C17—C18		118.5 (3)
C1—C6—C7	123.7 (2)		C16—C17—H17		120.7
C5—C6—C7	116.6 (2)		C18—C17—H17		120.7
C6—C7—C8	110.1(2)		C13—C18—C17		121.0 (3)
C6—C7—C13	111 3 (2)		C13—C18—H18		119.5
C8—C7—C13	111.5 (2)		C17—C18—H18		119.5
С6—С7—Н7	107.9				
C9—N1—C1—C6	-0.3 (4)		C7—C8—C9—N1		-2.2 (4)
C11—N1—C1—C6	176.6 (3)		C10—N2—C9—C8		178.1 (3)
C9—N1—C1—C2	-179.8(2)		C10—N2—C9—N1		-1.1 (3)
C11—N1—C1—C2	-3.0(4)		C1—N1—C9—C8		-2.2 (4)
C6—C1—C2—C3	24.5 (4)		C11—N1—C9—C8		-179.6 (3)
N1—C1—C2—C3	-156.0 (2)		C1—N1—C9—N2		177.0 (2)
C1—C2—C3—C4	-53.2 (3)		C11—N1—C9—N2		-0.3 (3)
C2—C3—C4—C5	51.4 (3)		C9—N2—C10—O2		-177.6 (3)
C3—C4—C5—O1	162.2 (3)		C9-N2-C10-C11		2.0 (3)
C3—C4—C5—C6	-19.4 (4)		C1-N1-C11-C10		-175.7 (2)
N1—C1—C6—C5	-171.3 (2)		C9—N1—C11—C10		1.4 (3)
C2—C1—C6—C5	8.3 (4)		O2-C10-C11-N1		177.6 (3)
N1—C1—C6—C7	7.2 (4)		N2-C10-C11-N1		-2.0 (3)
C2—C1—C6—C7	-173.3 (2)		C9-C8-C12-N3		153 (7)
O1-C5-C6-C1	167.3 (3)		C7-C8-C12-N3		-23 (7)
C4—C5—C6—C1	-11.1 (4)		C6—C7—C13—C18		130.9 (3)
O1—C5—C6—C7	-11.2 (4)		C8—C7—C13—C18		-105.8 (3)
C4—C5—C6—C7	170.3 (2)		C6—C7—C13—C14		-49.9 (3)
C1—C6—C7—C8	-10.3 (4)		C8—C7—C13—C14		73.4 (3)
C5—C6—C7—C8	168.2 (2)		C18—C13—C14—C15		-1.4 (4)
C1—C6—C7—C13	113.9 (3)		C7—C13—C14—C15		179.4 (2)
C5—C6—C7—C13	-67.7 (3)		C13—C14—C15—C16		0.3 (4)
C6—C7—C8—C9	7.7 (4)		C14—C15—C16—C17		1.3 (5)
C13—C7—C8—C9	-116.4 (3)		C14—C15—C16—F1		-179.0 (2)
C6—C7—C8—C12	-176.8 (2)		C15—C16—C17—C18		-1.7 (5)
C13—C7—C8—C12	59.2 (3)		F1-C16-C17-C18		178.6 (3)
C12—C8—C9—N2	3.4 (5)		C14—C13—C18—C17		1.0 (4)
C7—C8—C9—N2	178.8 (3)		C7—C13—C18—C17		-179.8 (3)
C12—C8—C9—N1	-177.6 (2)		C16—C17—C18—C13		0.5 (5)
Hydrogen-bond geometry (Å. °)					
D—H···A		<i>D</i> —Н	H····A	$D \cdots A$	<i>D</i> —H… <i>4</i>
N2_H2N3 ⁱ		0.86	2.15	3.006 (4)	173

Symmetry codes: (i) -x+2, -y, -z.

